M.L.Dahanukar College

Teaching Plan: 2019 - 20

Department:<u>I.T.</u> Class:<u>M.Sc.(I.T.)PartII</u> Semester:<u>III</u>

Subject: Artificial Neural Network

Name of the Faculty:Mr DhanrajJadhav

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
August	Unit I: Introduction to Cloud Computing		12
August	Virtualization		
	Unit II:Cloud Computing Architecture,		12
September	Fundamental cloud Security, Industrial		
	Platform and New Development		
	Unit III:Specialized cloud Mechanisms,		12
October	Cloud Management Mechanisms, Cloud		
	Security Mechanism		
	Unit IV: Fundamental Cloud Architectures,		12
November	Advanced Cloud Architectures		
December	Unit V: Cloud Delivery Model		12
	Considerations, cost Metrics and Pricing		
	Models, Service Quality Metrics and SLAs		

Sign of Faculty

Sign of Coordinator

P.T.V.A.'s M.L.Dahanukar College of Commerce

Teaching Plan: 2019 – 20

Department: Information Technology

Class: M.Sc (part I) – Sem-I Subject: DATA SCIENCE Name of the Faculty: Prof. Supritha Bhandary

Month	Topics to be Covered	Internal	Number
		Assessment	of
			Lectures
Sep	DataScienceTechnologyStack:		12
	RapidInformationFactory, Ecosystem, Data Science		
	Storage Tools, Data Lake, Data Vault, Data		
	WarehouseBusMatrix		
	LayeredFramework:DefinitionofDataScienceFramework,		
	Cross-IndustryStandardProcessforDataMining(CRISP-		
	DM), Business layer, Utility layer.		
Oct	Three Management Layers: Operational Management		16
	Layer, Processing-Stream Definition and Management,		
	Audit, Balance, and Control Layer, Balance, Control,		
	Yoke Solution, Cause-and-Effect, Analysis System,		
	Functional Layer, DataScienceProcess. Retrieve		
	Superstep,		
Nov	Assess Superstep Assess Superstep, Errors, Analysis of	Class Test	19
	Data, Practical Actions, Engineering a Practical Assess		
	Superstep, Process Superstep: Data Vault, Time-		
	Person-ObjectLocation-Event Data Vault, Data Science		
	Process, Data Science		
Dec	Transform Superstep: Univariate Analysis Computer		13
	Vision(CV), NaturalLanguageProcessing(NLP),Neural		
	Networks, TensorFlow. Organize and Report Supersteps		
	Organize Superstep, Report Superstep, Graphics,		
	Pictures, ShowingtheDifference		

Sign of Faculty

Sign of Coordinator

M.L.DahanukarCollegeofCommerce

TeachingPlan:2019-20

Department:I.T.

Class:<mark>M</mark>.Sc.(I.T.)

Semester:I

Subject:Research in Computing

NameoftheFaculty:LARISSAPEGADO

Month	TopicstobeCovered	InternalAssessment	NumberofLectures
September	Introduction: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues. Beginning Stages of Research Process: Problem definition, Qualitative research tools, Secondary data research.		18
October	Research Methods and Data Collection: Survey research, communicating with respondents, Observation methods, Experimental research. Measurement Concepts, Sampling and Field work: Levels of Scale measurement, attitude measurement.	Internal Test	18
November	Measurement Concepts, Sampling and Field work:questionnaire design, sampling designs and procedures, determination of sample size. Data Analysis and Presentation: Editing and		18

	Coding, Basic Data Analysis.	
December	Univariate Statistical Analysis and Bivariate Statistical analysis and differences between two variables. Multivariate Statistical Analysis.	6

SignofFacultySignofCoordinator

M.L.Dahanukar College of Commerce

Teaching Plan: 2019 – 20

Department: I.T.

Class:<mark>M</mark>.Sc.(I.T.)

Semester:<mark>I</mark>

Subject: Soft Computing

Name of the Faculty: Srushty Padte

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	Introduction of soft computing, soft		4 lectures
August	computing vs. hard computing,		
	various types of soft computing		
	techniques, Fuzzy Computing, Neural		
	Computing, Genetic Algorithms,		
	Associative Memory		
	Adaptive Resonance Theory, Classification,		12 lectures
Sept	Clustering, Bayesian Networks,		
	Probabilistic reasoning, applications of soft		
	computing.		
	Artificial Neural Network: Fundamental		
	concept, Evolution of Neural		
	Networks, Basic Models, McCulloh-Pitts		
	Neuron, Linear Separability,		
	Hebb Network.		
	Supervised Learning Network: Perceptron		
	Networks, Adaptive Linear		
	Neuron, Multiple Adaptive Linear Neurons,		
	Backpropagation Network		
	Radial Basis Function, Time Delay Network,		16 lectures
October	Functional Link Networks,		
	Tree Neural Network.		
	Associative Memory Networks: Training		
	algorithm for pattern		
	Association, Autoassociative memory		
	network, hetroassociative		
	memory network, bi-directional associative		
	memory, Hopfield		
	networks, iterative autoassociative		
	memory networks, temporal		
	associative memory networks.		
	UnSupervisedLearning Networks: Fixed		
	weight competitive nets,		
	Kohonenself-organizing feature maps,		
	learning vectors quantization,		
	counter propogationnetworks, adaptive		
	resonance theory networks.		

	Special Networks: Simulated annealing,	
	Boltzman machine. Gaussian	
	Machine, Cauchy Machine, Probabilistic	
	neural net, cascade correlation	
	network cognition network neo-cognition	
	network, cellular neural	
	network, optical neural network	
November	Third Generation Neural Networks: Sniking	16lectures
November	Neural networks	Incetares
	convolutional neural networks, deen	
	learning neural networks, extreme	
	learning machine model	
	Introduction to Eurzy Logic Classical Sets	
	and Eurzy cote: Classical sets	
	Further sets	
	Fuzzy sets.	
	Classical Relations and Fuzzy Relations:	
	Cartesian Product of relation,	
	classical relation, ruzzy relations, tolerance	
	and equivalence relations, non-	
	Iterative fuzzy sets.	
	Membership Function: features of the	
	membership functions, fuzzification,	
	methodsof membership value	
	assignments.	
	Defuzzification: Lambda-cuts for fuzzy sets,	
	Lambda-cuts for fuzzy relations,	
	Defuzzification methods.	
	Fuzzy Arithmetic and Fuzzy measures:	
	fuzzy arithmetic, fuzzy measures,	
	measuresof fuzziness, fuzzy integrals.	
	Fuzzy Rule base and Approximate	
	reasoning: Fuzzy proportion, formation of	
	rules,	
	decomposition of rules, aggregation of	
	fuzzy rules, fuzzy reasoning, fuzzy	
	inference	
	systems.	
	Fuzzy logic control systems: control system	
	design, architecture and operation of	
	FLC system, FLC system models and	
	applications of FLC System.	
December	Genetic Algorithm: Biological Background,	6 lectures
	Traditional optimization and search	
	techniques, genetic algorithm and search	
	space, genetic algorithm vs. traditional	
	algorithms, basic terminologies, simple	
	genetic algorithm, general genetic	
	algorithm, operators in genetic algorithm,	
	stopping condition for genetic algorithm	
	flow, constraints in genetic algorithm,	
	problem solving using genetic algorithm,	

the	
schema theorem, classification of genetic	
algorithm, Holland classifier systems,	
genetic programming, advantages and	
limitations and applications of genetic	
algorithm. Differential Evolution Algorithm,	
Hybrid soft computing techniques –	
neuro – fuzzy hybrid, genetic neuro-hybrid	
systems, genetic fuzzy hybrid and fuzzy	
genetic hybrid systems.	

Sign of Faculty

Sign of Coordinator